If it's not what You are looking for type in the equation solver your own equation and let us solve it.
60=-16t^2+96t
We move all terms to the left:
60-(-16t^2+96t)=0
We get rid of parentheses
16t^2-96t+60=0
a = 16; b = -96; c = +60;
Δ = b2-4ac
Δ = -962-4·16·60
Δ = 5376
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5376}=\sqrt{256*21}=\sqrt{256}*\sqrt{21}=16\sqrt{21}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-96)-16\sqrt{21}}{2*16}=\frac{96-16\sqrt{21}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-96)+16\sqrt{21}}{2*16}=\frac{96+16\sqrt{21}}{32} $
| 3+-11n=n+-13 | | 2(b–7)=6 | | 5x+2x-3=-3+3x+10x | | c/7+3=-2 | | 19-3c=-5 | | 2-36s=34 | | 5y+2=1/2(10+4) | | |5x-3|+12=4 | | 5-2x-28=4x=1 | | 4/5(15x20)-7x=5/6(12x-24)+6 | | 21-3(2x-1)+8x=42 | | 6+4(2w-2)=-2(6w-4)+8w | | (2X3y-5)=40 | | 1+x=13+5x | | m/18+27=215 | | x/2+5/4=1/6 | | -195=-5(7+8k) | | 39/8=13x | | 9(7x-9)=29 | | 23+3p=2 | | -48=2(3y-8)+24 | | 4-6x=60-2x | | X6+y=40 | | 2(x-4.3)/2=-2.3 | | 3(9-x)=2x-23 | | 101x+-89=121+x | | 60-3c=6 | | -8(3x+7)+6(x-1)=64 | | (X+6)+(6x-2)+(4x)=180 | | 7m-33=-3(2-5m)+m | | 2+-x=x+2 | | 4y=2+14 |